

MiTeX Solutions, Inc.

Object Messaging Specification for the MODBUS/TCP Protocol

Version 1.0

Prepared for:

GROUPE SCHNEIDER

Prepared By:

Richard Gwizdak
James Moyne

MiTeX Solutions, Inc.
363 Robyn Drive

Canton, Michigan 48187

Phone: 734-936-3645
FAX: 734-936-0347

gwizdak@mitexsolutions.com
moyne@mitexsolutions.com

April 7, 1999

Object Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

ii

Document Version

Version 0.2 – February 12, 1999
Version 0.3 – March 2, 1999
Version 1.0 – March 21, 1999 (draft)
Version 1.0 – April 6, 1999

Object Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

iii

Table of Contents

EXECUTIVE SUMMARY...V

INTRODUCTION ...1

REFERENCES..1

GLOSSARY..2

DATA TRANSMISSION..2

NETWORK ACCESS AND ADDRESSING..5

MESSAGE STRUCTURE..5

OBJECT ADDRESSING PROTOCOL..6

COMPATIBILITY OF MESSAGING WITH NON-MESSAGE CAPABLE NODES AND
NODES RETROFITTED WITH MESSAGING CAPABILITIES.......................................8

APPENDIX A:

ALTERNATE TRANSPORT MECHANISM FOR MODBUS/TCP -- UTILIZING
“EXISTING” REGISTER READ/WRITE FUNCTION CODES TO SUPPORT THE
MODBUS/TCP OBJECT MESSAGING PROTOCOL 10

BACKGROUND.. 10

SPECIFIC ISSUES... 10

REGISTER ASSIGNMENT... 11

PROTOCOL ENCAPSULATION DETAILS... 11

MAILBOX DISCOVERY.. 12

Object Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

iv

CHANNEL ASSIGNMENT AND RELEASE.. 12

PROTOCOL ENCAPSULATION... 13

PROTOCOL ENCODING EXAMPLE ... 14

APPENDIX B: SERVICE RESPONSE “ERROR CODE” PARAMETER VALUES 19

APPENDIX C: EXAMPLE OF A DATA FIELD IN A MODBUS MESSAGE 20

Object Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

v

Executive Summary

The message specification contains the following main elements:

?? Nodes on a Modbus/TCP network must use a 2-level address structure to select a target
(‘server’) device. The first level is the conventional 32-bit IP address. The second level is a ‘Unit
Identifier’ field which usually has values 0-247 to select multiple targets which share a single
network interface, such as use of network gateway products (note: that identifier 255 is generally
used to address the gateway device itself). Broadcasting of messages is handled specifically at the
application level as a point to point message service to all target devices.

? Object Messages are communicated serially in the “data” portion of the Modbus/TCP
protocol of each message transaction. This allows receiving devices to begin at the start of the
message frame, read the address portion, determine which device is addressed, and to know
when the message frame is completed.

? On the Modbus/TCP network, the underlying transport protocol handles the framing and
segmentation / re-assembly of messages including beginning and end delimiters. An additional
application layer fragmentation protocol is included to maintain compatibility with existing
applications; these applications generally support function data field lengths of less than or equal to
197 bytes per message (fragment). This transport protocol handles delivery to the destination
device making the address field of the messaging frame redundant for the actual transmission

? An object message contains the following fields:

Fragment Byte Count / Fragment Protocol / Object Messaging Protocol

Where the Fragment Protocol contains the following fields:

Fragment Indicators / Fragment Sequence Number

and, where the Object Messaging Protocol contains the following fields:

Class ID / Instance ID / Service Code / Data

1

Object Messaging Specification for the MODBUS/TCP Protocol

Version 1.0

Introduction

A key component of many network solution specifications, such as the SEMI sensor bus Network
Communication Standard (NCS)1, is a capability for communicating service request / response
information over the network to objects in a device. Although the current Modbus I/O
communication mechanism can be utilized for non-object-based communications to some devices, an
object messaging protocol is needed to specify device object communications, and to handle more
voluminous data transmissions that could be associated with some service transactions. The Modbus
protocol can support this type of communication, however it is not specified in the protocol document
[1]. This specification details an object messaging protocol for Modbus/TCP.

The requirements of the Modbus/TCP object messaging protocol are as follows:

1. Provides support for object messaging concurrently with the existing Modbus/TCP protocol
[2] by specifying an object addressing scheme that supports object to object communication
of service Requests and Responses.

2. Does not invalidate existing devices.

3. Supports transmission of messages (theoretically) of any length.

4. Includes an addressing scheme that supports the end-to-end communication of message
transactions in a client / server fashion.

The components of the Modbus/TCP object messaging protocol are presented in the following
sections. They include:

1. Data Transmission: the mechanism for transmitting object message data in Modbus/TCP
networks.

2. Network Access and Addressing: the method by which a Modbus device gains access to the
network for transmitting object based messages.

3. Object Message Structure: the fields / protocol within a Modbus object based message.

4. Object Addressing Protocol: the protocol within the message structure utilized for object to
object communication of service Requests and Responses.

This document also describes the mechanism by which message capable devices can co-exist with
message in-capable devices in a Modbus/TCP network.

References

[1] PI-MBUS-300 Rev. E -- Modicon Modbus Protocol Reference Guide (March 1993).

1 Semi is an acronym for Semiconductor Equipment and Material International. The SEMI NCS is a standard for device level

communications in the semiconductor industry.

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

2

[2] Open Modbus/TCP Specification Version 1.0, March 29, 1999 may be accessed from the
Modbus/TCP Word Wide Web Home Page, http://ww.SchneiderAutomation.com/openmbus

Glossary

Operating Cycle – A period of time during which a Modbus/TCP network device is capable of
supporting the communication (transmission and/or reception) of Modbus formatted information.
Note that an interruption in power will end an operating cycle. Note also that an operating cycle of a
device will end if that device senses that it is no longer capable of sending or receiving Modbus
information, e.g., if the device is disconnected from the network, or reset by a user.

Data Transmission

Messaging is supported in both peer-to-peer and Client/Server configured networks. In both cases
object messages are communicated serially in the “data” portion of the Modbus protocol of each
message transaction, as shown in Figure 1a.

The general content and format of the data portion of a Modbus message is identified by a function
code preceding that data (see Figure 1a.) All Modbus devices that support and wish to utilize object
messaging should implement the Object Messaging Function Code, #91 (decimal), assigned to this
feature wherever possible.

All object messages are sent between two nodes to execute service transactions. All service
transactions are associated with “request” services and consist of a request message and a
corresponding response message. Some service transactions are associated with “notify” services
and consist of a single notification message. All “notify” services require an application level
acknowledge response.

An alternate transport mechanism for Modbus/TCP is defined in Appendix A. Since both clients and
servers may be limited to using “standard” Modbus function codes, the alternate transport mechanism
defines a standardized method for utilizing these function codes to achieve object based
communication.

The Modbus protocol promotes a Client/Server communication technique and provides the internal
standard that a Modbus device must use for parsing messages. Each Object Messaging Request shall
be designated with an ‘even’ action code. Each Object Messaging Response shall be designated with
a corresponding ‘odd’ response code.

Since both clients and servers may be constructed using devices which support only the alternate
transport function codes, it is necessary that client and server devices support the alternate transport
mechanism in addition to the object messaging function code if so supported.

During communication on a Modbus/TCP network, the protocol determines how each device will
sense its address, recognize a message addressed to it, determine the kind of action to be taken, and
extract any data or other information contained in the message. Each Object Messaging request
requires a corresponding Object Messaging response. The device will construct the response
message and send it using the Modbus protocol. The Object Messaging protocol can also support a
‘Notify’ service for which a response is required from the target device. The specifics for adherence
to the Modbus protocol are contained in Modicon Modbus Protocol Reference Guide [1].

On the Modbus/TCP network, messages containing the Modbus protocol are embedded in the frame
or packet structure that is used by the network. On this type of network, devices communicate using a
peer-to-peer technique, in which any device can initiate a transaction with any other device. Thus a

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

3

device may operate either as a server or as a client in separate transactions. At the messaging level,
the Modbus protocol still applies the client/server principle even though the network communication
method is peer-to-peer.

Modbus applications generally operate in a client/server fashion where a client polls its servers for
information. Because of the point to point capability of the protocol, Modbus/TCP can support other
methods of communication such as servers reporting asynchronously in a cyclical or change of state
fashion using the ‘Notify’ service. Note that determinism may be compromised when utilizing these
asynchronous reporting methods.

The object message that is transmitted serially in the data field comprises Modbus messages. These
messages are transmitted in one or more sequential Fragments that together comprise the message.
The components (also called “fields”) of a Modbus message fragment are shown in Figure 1b. These
components and the Modbus message fragmentation scheme are explained in the following sections.

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

4

••• a a 0 0 0 ••• f a n
Identifier Protocol Length Unit Id Func Data

Fragment Byte Count

Messaging Protocol
<= 197 bytes in length Object Messaging

Function Code (91)

(1a)

Length 0 6 5 4 3 2 1 7 ••• Data Service Instance Id Class Id

Fragment
Byte
Count

Fragment Protocol Bits

Fragment
Sequence
Number

Reserved

Fragment
In Process
Indicator

Last
Fragment
Indicator

Object Messaging Protocol

(1b)

Messaging Protocol

Byte 0 Byte 1 Byte 2,3 Byte 4,5 Byte 6,7 Byte 8,9

Figure 1: Object Messaging Protocol Layout
(Each cell in Figure 1a corresponds to a single byte unless indicated as “…”.
Byte boundaries in Figure 1b are as indicated in the figure.)

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

5

Network Access and Addressing

Messaging is supported in a client / server fashion in the Modbus/TCP protocol whereby the
underlying TCP provides Node to Node client /server communication. An addressing scheme is
utilized within this messaging protocol to provide object communication within this client / server
protocol.

Specifically, the Modbus/TCP messaging protocol requires that all nodes wishing to utilize messaging
have a configurable IP + Unit ID identifier to uniquely determine the device address on the
Modbus/TCP network. Valid Unit ID addresses range between 0 and 247 (with 255 usually
reserved for communication directly with a gateway). Note that a sending device should use “0” as the
Unit ID when it knows that the target IP address has exactly one device. It is the responsibility of the
person configuring the network to set up device messaging addresses as necessary to guarantee
uniqueness.

On a Modbus/TCP network, when a device wishes to send a message it does so by establishing a
connection with another device or utilizing a device connection previously established. The
Modbus/TCP network protocol handles the framing of messages with beginning and end delimiters,
and with the Unit ID handles delivery of the message to the destination device.

The Modbus/TCP media access protocol utilizes various mechanisms, such as carrier sense multiple
access with collision detection (CSMA-CD), to determine access to the network. This protocol is
thus utilized to resolve conflicts in situations where multiple devices wish to begin transmitting
messages at the same time.

Message Structure

Each Modbus object message, transmitted serially in the Data field, consists of one or more sequential
message fragments. Each message fragment contains seven fields as shown in Figure 1b. Table 1
contains a description of each of these fields.

Byte
Number

Field Name Size
(bits)

Description

0 Fragment Byte
Count

8 Contains the byte length (not including itself) of the Messaging
protocol portion of the Modbus transaction. The maximum
Fragment Byte Count is 197 bytes (decimal).

1 Fragment In Process
Indicator

1 Value of TRUE (1) indicates that this Messaging protocol field is
one fragment of a multi-fragment message.

1 Last Fragment
Indicator

1 Value of TRUE (1) indicates the last fragment in the Messaging
protocol

1 Reserved 3 Not used at this time. Should be set to zero (0).

1 Fragment Sequence
Number

3 Counter indicating sequential fragment number beginning with 000,
001, 010, …, 111. Counter rolls over from 111 to 000.

Table 1: Fields in a Message Fragment

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

6

The Data (i.e., Object Addressing Protocol) portion of larger messages must be broken into smaller
fragments so that high priority messages can gain access to the network in a timely fashion.
Specifically, a message fragment must be less than or equal to 197 bytes (including itself and the
Payload Length + Fragmentation Protocol byte). When a device prepares to send a message longer
than the maximum fragment length, it must break the Messaging Protocol field of the message up into
sequential fragments of 195 or less bytes each, and construct data fragments (of 197 or less bytes,
see Figure 2) consisting of the fields described in Table 2.

Note, a device sending a fragmented message to a second device can not begin sending another
message (fragmented or unfragmented) to that second device until it has completed sending the first
message. If a receiving device detects that this condition has occurred, it should reject both messages
and attempt (either through a response with an error code – see Appendix B, or a standard exception
code 03) to inform the sending device of the error.

Object Addressing Protocol

The Data Fragment portions of the message fragments, when concatenated at a device, form the
Data field portion of the message. This data is formatted according to the Object Addressing
Protocol, that is, the protocol used for object-to-object communication between nodes.

The objects, their groupings, structure, and behavior in Modbus devices conform to an Object
Model. In this model, objects are generally regarded as entities that group structure and behavior in a
logical manner. Objects usually have a physical or conceptual analog in a device application. For
example, an object may be associated with a sensor in a device, or may be the collection of structure
and behavior that comprises the management of the device. The Modbus Object Addressing Protocol
utilizes a Class / Instance hierarchy to support inheritance to allow for the definition of “types” of
objects (Classes) as well as specific implementations of these objects (Instances). For example an
object class in a photodetector array device might be “photodetector” where object instances refer
individually to each photodetector.

An object (class or instance) has zero or more attributes, which are parameters that contain
information associated with the device. For example “sensor value” may be a parameter associated
with a sensor object instance.

An object (class or instance) supports zero or more services, which are functions or capabilities that
the object can provide. Most services are request services in which a “request” for a service is
issued to an object, and the object generates a specific “response” to the requestor as part of the
process of carrying out the service request. Parameters may be included with the request and / or
response as necessary to carry out the service. As an example, a service supported by a sensor
object may be “Get” where an associated request parameter is “attribute number” and an associated
response parameter is “attribute value”. Note that the first service parameter of all response service
messages is an error code (see Table 2). An object may also support notification services.
“Notifications” associated with these services are generated asynchronously by the object.
Parameters may be included with the service notification as necessary to carry out the service. As an
example, an Alarm Publish service may be associated with a sensor object and would reports an
alarm state attribute whenever that attribute changes from zero to a non-zero value.

An object also has associated behavior, which identifies as appropriate how the object implements
services, interacts with other objects, interacts with any outside environment, etc. For example,
behavior associated with a sensor object might be: on receipt of “Get” service request, where attribute
number parameter corresponds to “value” attribute, detect environment value, store in “value”
attribute, and send “Get” service response with response parameter value equal to “value” attribute.

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

7

The Object Messaging Protocol utilized in the Data field of Modbus message provides for the
communication of services (requests, responses and notifications), between objects at various
message capable nodes on the Modbus/TCP network, thereby supporting the Modbus object model.
In order to provide this support, the Data field of a message is sub-divided into a number of sub-fields
as shown in Figure 2. These sub-fields are described in Table 2. Refer to Appendix C for an example
of the message format.

Figure 2: The Data Field in a Modbus Message
(Bit number represents transmission position)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Byte
 Order

1 - 2

3 - 4

5 - 6

7- 8

•
•
•

< 195

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Instance ID (16 bits)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MSB LSB MSB LSBUpper Byte Lower Byte

Class ID (16 bits)

MSB LSB MSB LSBUpper Byte Lower Byte

Service Code (16 bits)

MSB LSB MSB LSBUpper Byte Lower Byte

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Service Parameter Data

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

8

Sub-Field Name Size (bits) Description

Fragment Byte
Count

8 Contains the length in bytes, (not including itself) of the Messaging protocol
portion of the Modbus transaction. Note that it does not include any byte
that may be “stuffed” at the end of a fragment to ensure word boundaries of
transmissions (see description of “Data and Stuff Byte” Sub-Fields below).
Maximum Fragment Byte Count length is 197 bytes.

Fragment
Protocol

8 Refer to Table 1 and Figure 1a as:
Bit 0: Fragment In Process Indicator
Bit 1: Last Fragment Indicator
Bit 2-4: Reserved
Bit 5-7: Fragment Sequence Number

Class ID 16 The object class associated with the service. In a service request this is the
target class ID of the object to which the request is directed. In a service
response or notification it is the class ID of the object that is sending the
response.

Instance ID 16 The object instance associated with the service. In a service request this is
the target instance ID of the object to which the request is directed. In a
service response or notification it is the instance ID of the object that is
sending the response. Note that if a servic e is directed at the Class object,
the Instance ID is zero.

Service Code 16 A number indicating the service request / response / notification being
issued. Service requests and notifications have odd numbered Service Code
values. Each service response has a value equal to the corresponding
Service Code (Request) + 1. A Service Code of zero is invalid.

Data N * 16 Data associated with the service request / response / notification, i.e., service
parameters. Note that the first parameter of ALL response service messages
is a one-word error code. Common response service error codes are defined
in Appendix B.

Stuff Byte 8
(Condition
al)

If the length of the Data field is not a multiple of 16 bits, this field is included
at the end of the fragment to ensure that the transmission is a multiple of 16
bits. Note that this field does not contain meaningful data and is not
included in the Fragment Byte Count

Table 2: Sub-Fields of the Message Data Field

A Modbus message communicates a service request, response or notification to or from a specific
object instance of an object class at a node using the Object Addressing Protocol. In this way the
structure / behavior of an object can be communicated / invoked over a Modbus/TCP network using
Modbus messages.

Compatibility of Messaging with Non-Message Capable Nodes and Nodes
Retrofitted with Messaging Capabilities

A large number of Modbus devices do not support the object messaging capability for reasons of
older devices, simplicity, memory conservation, data requirements, etc. These object message

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

9

incapable devices can co-exist with message capable devices in a Modbus/TCP network. The object
message incapable devices shall respond to the device “query” with an error “response” (function
code 01) which would indicate “Illegal Function” error.

A number of Modbus devices are capable of encoding/decoding object messaging, but can only utilize
“currently existing” Modbus function codes. For these devices an alternate set of existing function
codes have been identified. Device setup and use of these function codes as an alternate method of
supporting object messaging is detailed in Appendix A. Note that the default Object Messaging
Function code, #91 should be used wherever possible.

Since both clients and servers may be constructed using devices which support only the alternate
transport function codes, it is necessary that client and server devices support the alternate transport
mechanism in addition to the object messaging function code if so supported.

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

10

Appendix A: Alternate Transport Mechanism for Modbus/TCP -- Utilizing
“Existing” Register Read/Write Function Codes to Support the
Modbus/TCP Object Messaging Protocol

Background

There are many situations in which facilities requiring ‘new’ MODBUS functions need to be retrofitted
to devices which implement only the 'standard’ functions. In many cases, it is impractical to replace
the PLC firmware or Operating System libraries which provide MODBUS service, so an approach
which allows the MODBUS functions to be ‘encapsulated’ or ‘tunneled’ is required instead.

This appendix describes such a mechanism, with the particular relation to the SEMI object model
protocol extensions described elsewhere.

Specific issues

All MODBUS devices have facilities for exchanging blocks of memory of undefined meaning. The
primary functions used are

FC 3 – ‘read registers’

Allows the ‘read’ of up to 125 16-bit words from a target device, given a start address (‘reference’)
and length (‘number of registers’)

FC 16 – ‘write registers’

Allows the ‘write’ of up to 100 16-bit words to a target device, given a start address and length as
above.

Any such individual transfer may be regarded as ‘atomic’, meaning that the data is treated as if it were
‘snapshot’ at a single instant in time. A movement of data comprising more than one transfer may
NOT be regarded as atomic, since it may span more than one ‘scan’ of the target device, and if the
data were being constantly updated then the information transferred from different scans would be
inconsistent.

Modbus does not maintain any true nature of a ‘connection’ between a client and a server, except for
the duration of a single ‘transaction’ comprising a MODBUS request and its associated response.
Therefore there is the possibility that a sequence of transactions initiated by one client to a server may
be interleaved with transactions from another client. This is of particular importance when dealing with
data areas such as ‘mailboxes’ which are designed to be updated by multiple clients. There is no
guarantee that multiple attempts to update such a mailbox will not occur simultaneously.

Modern PLC’s have a mechanism for accepting ‘user-specified function blocks’ which accept as
parameters a block of registers of unknown content but discernable address and length. Such
functions may be written in conventional computer language, such as C or C++, and provide a
suitable way to handle algorithms or other data processing tasks for which the traditional PLC ladder
or function block languages are inappropriate. However they are deliberately NOT allowed to
perform non-computational tasks, such as control of I/O devices or generation of networking
messages.

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

11

By combining such user function blocks with the existing MODBUS register moving primitives, it is
possible to implement arbitrarily complex functions. This is exactly what is intended by this document.

Register Assignment

See text below for detail interpretation

Word 0: signature word 0 = “SE” = 0x5345

Word 1: signature word 1 = “MI” = 0x4D49

Word 2: signature checksum = 0x5F72

Word 3: number of channels supported = N (1 to 40)

Word 4: channel assignment mailbox (writable by all clients)

Word 5: channel assignment ID for channel 1

…

Word 4+N: channel assignment ID for channel N

Word 5+N: sequence/ID word of request buffer for channel 1

Word 6+N: bytes 0 and 1 of request for channel 1

…

Word 104+N: bytes 197 and 198 of request for channel 1

Word 105+N: sequence/ID word of response buffer for channel 1

Word 106+N: bytes 0 and 1 of response for channel 1

…

Word 204+N: bytes 197 and 198 of response for channel 1

Word 205+N to 404+N: as for 5+N to 204+N for channel 2

…

Word 5+200(N-1) to 204+200(N-1): request and response buffers for channel N

Note that the sequence/ID occupies a whole word. This is because the application message, starting
with the byte count, is already a multiple of 16 bits in length so there is no value in using a shorter field.

Protocol Encapsulation Details

There are really three parts to this definition

1. Mailbox discovery

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

12

2. Channel assignment and release

3. Protocol message encapsulation

Mailbox Discovery

Since the mechanism is layered on top of the standard MODBUS FC 3 and FC 16 operations, it is
not possible to confirm that a target device supports the protocol by interrogating it speculatively, as is
true for all individual MODBUS functions. Instead, communication is arranged to use a series of data
buffers, allocated from blocks of registers. In order to confirm that the registers have the purpose
intended, a ‘signature pattern’ is deposited at a recognizable location. By arranging that the chance of
accidental match of this signature pattern is very low, the chance of mis-identifying a conventional
PLC is made similarly low. In this encapsulation, we use a series of 3 16-bit words as the signature
pattern which must match, so that the chance of mis-identification of a random PLC is about 1 in
2^48, or one in 10^14

The reason for relying upon a signature rather than a predefined register address is to allow flexibility
in retrofitting devices whose register allocation have already been made. The penalty for this technique
is an increased communication burden at initial connection. However even if a register table of size
10000 words had to be scanned to find the signature, this takes only 80 read operations (125 words
each), and occupies less than 20 msec of transmission time on an Ethernet network. It can therefore
be readily completed in a few seconds after restart of a client machine without undue burden on the
network.

The signature block chosen for the SEMI protocol consists of the following 3 words:

Word 0: ASCII “SE” = 0x5345

Word 1: ASCII “MI” = 0x4D49

Word 2: Zero-sum checksum (such that words 0-2 when added would result in zero) = 0x5F72

Channel Assignment and Release

Any mechanism for supervisory control must allow for the possibility of substitution of the supervising
device, either as a deliberate act or as consequence of failure. In a conventional network, this is
usually achieved by allowing for multiple 'channels' at any instant, and allowing for a new ‘master’ to
take control by issuing commands using its own channel. In the case of a MODBUS encapsulation, a
slightly different mechanism is necessary, as a consequence of the inability of a server (Modbus slave)
to confirm the identity of the client (MODBUS master) which is requesting any operation. Any such
identification, although not provided directly by the MODBUS protocol, can be added at the
encapsulation level.

The mechanism defined here uses an arbitrary number of ‘channels’, each channel in turn reserving:

A single register ‘assignment’ indicator

A 100-register request buffer

A 100-register response buffer

In addition, there is a single multiple-access register known as the ‘mailbox’, and which is used by all
clients to request assignment of a channel.

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

13

It is arranged that the assignment registers for all channels are contiguous, so that a client may confirm
the assignment status of all channels in a single READ operation. A channel is requested by writing a
non-zero identification pattern into the ‘mailbox’. Details of the meaning of these identification patterns
is meaningless to the mechanism, but a common approach is to allocate a unique, non-zero, 16-bit
number to each device which may perform client service. That way, ID conflicts will be avoided.

To request a channel, first see if you already have one allocated. This can be done by READing the
channel assignment block, to see if your chosen ID is still registered. If it is, you may continue to use it.
If it has been cleared to zero, then the server has performed a unilateral close, probably due to an
inactivity timeout, and the client must ‘re-bid’ for a channel using the mailbox.

The server will react to a non-zero value in the mailbox by assigning a channel if one is available,
indicating this by copying the ID value from the mailbox into the appropriate ‘assignment’ register, and
clearing the mailbox to zero in preparation for the next assignment request. Note that it is perfectly
possible for multiple clients’ assignment requests to collide, so the client should read all registers from
the mailbox to the end of the assignment block to confirm the status of his request. If his ID has been
removed from the mailbox, but has not appeared in one of the assignment registers, he should assume
the request has been lost and be prepared to re-submit.

A well-behaved client will release its channel voluntarily after use, this is done by writing a zero
directly to the ASSIGNMENT register. The server will guarantee not to re-allocate an ‘involuntarily
released’ channel for a period of at least one second, therefore a client may safely rely upon the
indication that it owns the channel obtained during a preceding read, so long as the hesitation is
significantly less than one second. After a voluntary close, there is no need for a time delay before re-
assignment.

(This operation does not cause any collision problems because MODBUS allows the length of a write
operation to have an extent of a single word, thus the clearing of the assignment word for client 1 by
client 1 will not change the values recorded in the table for any other channels)

The server will perform a unilateral close on any channel which does not have a new request placed
upon it for a period of one second. Supervising devices which guarantee a scan time less than one
second may therefore leave the channel open and reasonably expect it to be preserved. Devices
requiring intermittent service where hesitation may exceed one second should perform the voluntary
close operation to avoid unexpected hesitation.

The server will maintain a ‘guard band’

Protocol Encapsulation

Once a channel has been allocated, the client is free to place requests in the ‘request buffer’ and to
look for responses in the ‘response buffer’. However the first word of both the request and response
buffers has specific meaning. It is a sequence number field which will vary from one request to the
next, and which allows the server to determine that the contents of the request buffer does indeed
represent a NEW request, and is not simply the previous one unaltered.

The next word is the start of the Object Messaging Protocol data unit, starting with the fragment
length byte and fragmentation flags byte.

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

14

(note that if a message is carried using fragmentation, the meaning of this field is taken on a fragment
by fragment basis. It thus always indicates the number of significant bytes immediately following the
byte count itself)

When the request has been recognized by the server, it will generate a response with the same
structure. The sequence field of the response will be copied from the request. The length field of the
response will indicate the length of the response (or response fragment)

The payload of the request and response buffers will be identical to the protocol definition for the
OMP protocol request and response given earlier, except that the bytes up to and including the
function code are discarded.

The result of this relationship is that the handling of messages either by direct transmission or by
alternate transmission is largely identical. This means that testing of the alternate protocol is limited to
transport encoding only, that any application functionality will be handled by common processing and
therefore will generate identical results using either mechanism.

Protocol Encoding Example

(Numbers below should be assumed hexadecimal unless otherwise stated or followed directly by a
period)

The examples below show MODBUS/TCP exchanges using the same typographic conventions as is
used in the OPEN MODBUS/TCP SPECIFICATION. That is, an exchange written as

 03 00 00 00 01 => 03 02 12 34

represents a MODBUS request of 03 00 00 00 01 (function code 03, reference 0000, count
0001)

generating a MODBUS response of 03 02 12 34 (function code 03, byte count 02, data value
1234)

When seen as a TCP data exchange, and assuming a unit identifier of 09, each of the above messages
would be prepended with the 7 byte sequence consisting of transaction_id (2) protocol (2) length (2)
and unit_id (1) resulting in:

Request: 00 00 00 00 00 06 09 03 00 00 00 01

Response: 00 00 00 00 00 05 09 03 02 12 34

The Object Messaging Protocol example used here is a typical enquiry to find the device type. This
would be a suitable enquiry to find whether the device in question was an OMP-capable device, and
if so what you could expect it to do.

The structure of the query and response over Modbus using the native encoding would be

 5B 09 00 00 01 00 01 00 07 00 01 => 5B 09 00 00 01 00 01 00 08 12 34

This is broken down as follows

Request

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

15

5B Modbus function code (91. Decimal)

Number of bytes of message (fragment) following

no fragmentation

00 01 class = 0001

00 01 instance = 0001

00 07 service request = get attribute

00 01 service data = attribute number = 0001 device type

Response

5B Modbus function code

Number of bytes of message (fragment) following

no fragmentation

00 01 class = 0001

00 01 instance = 0001

00 08 service request = get attribute response

12 34 service data = attribute value = 1234

Now if the server did not support the native encoding, it would respond to the Modbus query with an
‘undefined function’ exception (Modbus exception = 01) This would come through as

5B 09 00 00 01 00 01 00 07 00 01 => DB 01

In order to use the alternate encoding, the client must first identify the ‘signature area’ found
‘somewhere’ in the register space of the target. So the client issues a series of Modbus requests to
read the register space, and inspects the results looking for the signature pattern which will be the
sequence (in hex)

4D49 5F72

For example, a read of the first 125. (decimal) registers would be the following exchange

03 00 00 00 7D => 03 FA (plus 250. bytes of data…)

and the next 125 registers would be

03 00 7D 00 7D => 03 FA (plus 250. bytes of data…)

At some point, the 5345 4D49 5F72 sequence will be seen, or an exception response will be
generated because the register number is too large. This would normally be exception 2 (bad
reference), looking like this (assume we are up to reference 7D00 by this time, a big number)

03 7D 00 00 7D => 83 02

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

16

Assume for the continuation that the signature block was found at reference 4000 (hex)

This means that if the client were now to issue a request to read 3 words at 4000, he would get the
following

03 40 00 00 03 => 03 06 53 45 4D 49 5F 72

It also means that the number of channels would be found at 4003, the session mailbox at 4004, and
the current assignments at 4005 on

Issue a request to read 42. (decimal) words at reference 4003. This will be enough to read the whole
reservation table, since the maximum number of sessions is 40. The results will be

Word 0: number of sessions

Word 1: mailbox (ignore for now)

Word 2: reservation for channel 1

Word 3: reservation for channel 2

…

Assume the sequence was

03 40 03 00 2A => 03 54 00 08 00 00 00 00 (plus 39. other words)

The response says

function code

byte count (42. decimal words = 84. Bytes)

00 08 number of channels supported = 0008

00 00 current mailbox state = empty

00 00 channel 1 state = unreserved

It is a remote possibility on initial connection, but must still be considered, that there is already a
session established between this client and this server. If that were true, then the ‘client ID’ number
allocated to this client would be found already in the session allocation table. If not, then the client
must ‘bid’ for a channel by putting the very same client ID pattern in the ‘mailbox’, and then repeating
the check to see if the server is willing to allocate a channel. (It should be, because it appears there
are currently unallocated channels.)

Assuming the client ID is 0xABCD, the transaction would be

10 40 04 00 01 02 AB CD => 10 40 04 00 01

which is ‘write registers, reference 4004, 1 word, 2 bytes, value 0xABCD’

Now the client repeats the channel address table read request, looking for the following results

The mailbox still contains ABCD

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

17

The server has not yet processed the request, try reading again

The mailbox does not contain ABCD, but ABCD appears in one of the channel reservation words

The server has allocated the given channel for this session. Based on WHICH channel was allocated,
the address of the request and receive buffers can be determined

The mailbox does not contain ABCD, and ABCD appears nowhere in the channel reservation list

Probably there was a ‘collision’ and 2 clients bid simultaneously, with the result that te earlier value in
the mailbox was overwritten before being considered by the server. Retry the bid process from the
beginning by writing the mailbox again.

Assume that the pattern ABCD was found in the first channel assignment word, for example

03 40 03 00 2A => 03 54 00 08 00 00 AB CD (plus 39. other words)

This indicates that channel 1 has been assigned to this session. That means in turn that the request
buffer for this channel is found at a reference number to be calculated as follows

 4005 + (start of channel assignment table)

 0008 + (length of channel assignment table = number of channels

 (0 x (channel number minus one)

 00C8) (length of request buffer + length of response buffer = 200. Decimal)

and the response buffer is found 0064 hex words further on. In this particular case, the request buffer
starts at 400D and the response buffer at 4071

Finally (!) the client gets to place the original request, which as we recall would in native encoding
have been

5B 09 00 00 01 00 01 00 07 00 01 => 5B 09 00 00 01 00 01 00 08 12 34

When presented for alternate encoding the initial 5B is omitted, the rest from the byte count onwards
is placed in the request buffer after the sequence word. Assuming the client’s next sequence value was
2222, this would be achieved by the following sequence

10 40 0D 00 06 0C 22 22 09 00 00 01 00 01 00 07 00 01 => 10 40 0D 00 06

Now the client must check, possibly repeatedly, to see if the request has been processed by the
server and a response provided. When that happens, the Modbus response will have been placed in
the response buffer using the same encoding convention. The simplest way to check for this is to do a
full 100 (decimal) word read of the whole response buffer, and inspect the first word to see if it
contains the new sequence number (2222). Note that there is no requirement that sequence numbers
be in fact contiguous, only that they be distinguishable from previous sequence numbers, so that the
responses can be distinguished from a previous response still in the buffer. The value zero must not be
used, since that indicates ‘no message’ and will be the value left in the ID field of the REQUEST
buffer by the server, to allow the server to record that the request apparently in the buffer has already
been processed.

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

18

The transaction to extract the response will look like this, if the response has been prepared

03 40 71 00 64 => 03 C8 22 22 09 00 00 01 00 01 00 08 12 34 (plus 94. other words)

The client extracts the response, just as if it had been handled using native encoding, where it would
have been

5B 09 00 00 01 00 01 00 08 12 34

It is decoded as

byte count

not fragmented

00 01 class

00 01 instance

00 08 get attribute response

12 34 response data

If any pattern other than the ID is found in the first word, then the request has not yet been processed

The above sequence can be repeated, just change the sequence number to a different value so that the
responses can be readily distinguished. Note that the server really does not care what number is used,
since it just checks against the zero value in the request to see if a new request has been presented.

When the channel is to be released, which for well-behaved clients would be if the client does not
intend to re-use the channel with in the next 1 second, it does so by clearing the channel reservation
entry.

Recall from the example above that the allocation word for this channel was at 4005 hex (This was
the word containing the client’s identifier pattern of ABCD)

To clear it, issue a write register request of 1 word

10 40 05 00 01 02 00 00 => 10 40 05 00 01

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

19

Appendix B: Service Response “Error Code” Parameter Values
The first parameter of ALL service code response messages is the “Error Code” parameter. This
parameter is one word in length and can have a value ranging from 0 to 65535. The following table
identifies the error response type associated with value ranges of this parameter.

Error Code Value Range Meaning

0 Success

1 – 127 Error – General

128 – 255 Error – Device Type Specific

256 – 65,535 Error – Manufacturer Specific

The following table is the enumeration of General Errors:

Error Code Value Meaning

1 Invalid service code

2 Invalid service code parameter

3 Invalid attribute

4 Attribute out of range

5 Not valid in this state

6 Fragmentation error

7 Fragments from multiple messages

255 Unspecified error

Device Type Specific Error Code meanings would be defined through agreement of manufacturers of
a specific device type within the Modbus organization. Manufacturer Specific Error Code meanings
are defined and documented by the manufacturer.

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

20

Appendix C: Example of a Data Field in a Modbus Message

The following is a formatted example of the Message Data Field in a Modbus message represented in
Figure 1b and Figure 2. It details a format of a service request with a service code of 00 05 directed
at an object instance with a Class ID of 00 04 and an Instance ID of 00 01 (numbers are represented
in hexadecimal):

The encoding of the sub-fields (see Table 2) is as follows:

Fragment Byte Count (1 byte) = 08

Fragment Protocol (1 byte): 40, (01000000 binary) where:
 Fragment In process Indicator = 0 (False)
 Last Fragment Indicator = 1 (True)
 Reserved = 000
 Fragment Sequence Number = 000

Class ID (2 bytes) = 00 04

Instance ID (2 bytes) = 00 01

Service Code (2 bytes) = 00 05

Service Parameter (1 byte) = 08

The example below shows the Message Data Field of the message fragment as it would be
transformed (most significant bit of each byte transmitted first), and viewed over the transmission line.
For example, the Fragment Byte Count of 08 (00001000 binary) would be transmitted as 10
(00010000 binary).

Fragment Byte Count = 10

Fragment Protocol Bits = 02

Class ID = 00 20

Instance ID = 00 80

Service Code = 00 A0

Service Parameter = 10

The transmission would appear as:

10 02 00 20 00 80 00 A0 10 00

Network Messaging Specification for the MODBUS/TCP Protocol: Version 1.0

21

Notes:

1.) Since the data length is 1 byte it is not a multiple of 16 bits. Thus a byte with a value of 00 is
“stuffed” at the end of the message (this is the conditional Stuff Byte field). Note that the
Fragment Byte Count does not include this byte.

2.) The Fragment Protocol byte is transmitted MSB first (as with all other bytes). Thus for
example, a fragment protocol with:

 Fragment In process Indicator = 0 (False)
 Last Fragment Indicator = 1 (True)
 Reserved = 000
 Fragment Sequence Number = 001

Would be represented as 41 (binary 01000001), and transmitted as 82 (binary 10000010),

