MiTeX Solutions, Inc.

Object Messaging Specification for the MODBUS/TCP Protocol

Verson 1.0

Prepared for:
GROUPE SCHNEIDER

Prepared By:

Richard Gwizdak
James Moyne

MiTeX Solutions, Inc.
363 Robyn Drive
Canton, Michigan 48187

Phone: 734-936-3645
FAX: 734-936-0347
. Pmitexsoluti

moyne@mitexsolutions.com

April 7, 1999

Object Messaging Specification for the MODBUSTCP Protocol: Version 1.0

Document Version

Verson 0.2 —February 12, 1999
Verson 0.3—March 2, 1999
Verson 1.0—March 21, 1999 (draft)
Verson 1.0—April 6, 1999

Object Messaging Specification for the MODBUSTCP Protocol: Version 1.0

Table of Contents

EXECUTIVE SUMMARY. ..o \Y,
INTRODUGCTION ..ottt e sre e e n e n e ne s 1
REFERENGCESo s e 1
GLOSSARY e e e e r e 2
DATA TRANSMISSION ...t nne e n e nenneene 2
NETWORK ACCESS AND ADDRESSING.......ccoooiiiiis S
MESSAGE STRUCTUREo e S
OBJECT ADDRESSING PROTOGCOLcceiiiiieieeeere e 6

COMPATIBILITY OF MESSAGING WITH NON-MESSAGE CAPABLE NODES AND
NODES RETROFITTED WITH MESSAGING CAPABILITIES......cccoie e 8

APPENDIX A:

ALTERNATE TRANSPORT MECHANISM FOR MODBUS/TCP - UTILIZING
“EXISTING” REGISTER READ/WRITE FUNCTION CODES TO SUPPORT THE

MODBUS/TCP OBJECT MESSAGING PROTOCOL 10

BACKGROUND.ot e e e 10
SPECIFIC ISSUES ... oo 10
REGISTER ASSIGNMENT ..ot 11
PROTOCOL ENCAPSULATION DETAILS.....ooiieeeeee s 11
MAILBOX DISCOVERY ..ot 12

Object Messaging Specification for the MODBUSTCP Protocol: Version 1.0

CHANNEL ASSIGNMENT AND RELEASE.......co e s 12
PROTOCOL ENCAPSULATION ..ot s 13
PROTOCOL ENCODING EXAMPLE ... s 14

APPENDIX B: SERVICE RESPONSE “ERROR CODE” PARAMETER VALUES 19

APPENDIX C: EXAMPLE OF A DATA FIELD IN A MODBUS MESSAGE 20

Object Messaging Specification for the MODBUSTCP Protocol: Version 1.0

Executive Summary

The message specification contains the following main dements:

?? Nodes on a Modbus/TCP network must use a 2level address structure to select a target
(‘server’) device. Thefird leve is the conventiona 32-bit IP address. The second levd isa*Unit
Identifier’ field which usudly has vaues 6247 to sdect multiple targets which share a single
network interface, such as use of network gateway products (note: that identifier 255 is generaly
used to address the gateway device itself). Broadcasting of messages is handled specificdly at the
gpplication leve as a point to point message serviceto al target devices.

? Object Messages are communicated seridly in the “data’ portion of the Modbus/'TCP
protocol of each message transaction. This alows receiving devices to begin at the sart of the
message frame, read the address portion, determine which device is addressed, and to know
when the message frame is completed.

? On the Modbus'TCP network, the underlying transport protocol handles the framing and
segmentation / re-assembly of messages including beginning and end ddimiters. An additiond
goplication layer fragmentation protocol is included to maintain competibility with exiging
aoplications; these applications generaly support function data field lengths of less than or equd to
197 bytes per message (fragment). This trangport protocol handles delivery to the destination
device making the address field of the messaging frame redundant for the actud transmisson

? An object message contains the following fidds:

Fragment Byte Count / Fragment Protocol / Object Messaging Protocol

Where the Fragment Protocol contains the following fidds:

Fragment Indicators/ Fragment Sequence Number

and, where the Object Messaging Protocol containsthe following fidds

ClassID / Instance ID / Service Code/ Data

Object Messaging Specification for the MODBUS/TCP Protocol

Version 1.0

Introduction

A key component of many network solution specifications, such as the SEMI sensor bus Network
Communication Standard (NCS),, is a capability for communicating service request / response
information over the network to objects in a device. Although the current Modbus /O
communication mechanism can be utilized for norobject-based communications to sore devices, an
object messaging protocol is needed to specify device object communications, and to handle more
voluminous data transmissions that could be associated with some service transactions. The Modbus
protocol can support this type of communication, however it is not specified in the protocol document
[1]. This specification details an object messaging protocol for Modbus/TCP.

The requirements of the Modbus/TCP object messaging protocol are asfollows:

1. Provides support for object messaging concurrently with the existing Modbus/TCP protocol
[2] by specifying an object addressng scheme that supports object to object communication
of service Reguests and Responses.

2. Doesnot invaidate existing devices.
3. Supports transmission of messages (theoreticaly) of any length.

. Includes an addressng scheme that supports the end-to-end communication of message
transactionsin aclient / server fashion.

The components of the Modbus/TCP object messaging protocol are presented in the following
sections. They indlude:

1. Daa Transmisson: the mechanism for transmitting object message data in Modbus/TCP
networks.

2. Network Access and Addressing: the method by which a Modbus device gains access to the
network for transmitting object based messages.

3. Object Message Structure: the fields / protocol within a Modbus object based message.

4. Object Addressing Protocol: the protocol within the message sructure utilized for object to
object communication of service Requests and Responses.

This document aso describes the mechanism by which message capable devices can co-exigt with
message in- cagpable devices in a Modbus/TCP network.

References
[1] Pl-MBUS-300 Rev. E -- Modicon Modbus Protocol Reference Guide (March 1993).

1 Semi is an acronym for Semiconductor Equipment and Material International. The SEMI NCSisastandard for devicelevel
communications in the semiconductor industry.

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

[2] Open Modbus/TCP Specification Version 1.0, March 29, 1999 may be accessed from the
Modbus'TCP Word Wide Web Home Page, http://ww.Schnel derAutomation.com/openmbus

Glossary

Operating Cycle — A period of time during which a Modbus/TCP network device is capable of
supporting the communication (transmisson and/or reception) of Modbus formatted informetion.

Note that an interruption in power will end an operating cycle. Note aso that an operating cycle of a
device will end if that device senses that it is no longer cagpable of sending or receiving Modbus
information, e.g., if the deviceis disconnected from the network, or reset by a user.

Data Transmission

Messaging is supported in both peer-to-peer and Client/Server configured networks. 1n both cases
object messages are communicated seridly in the “data’ portion of the Modbus protocol of each
message transaction, as shown in Figure 1a.

The generd content and format of the data portion of a Modbus message is identified by a function
code preceding that data (see Figure 1a) All Modbus devices that support and wish to utilize object
messaging should implement the Object Messaging Function Code, #91 (decimd), assgned to this
feature wherever possible.

All object messages are sent between two nodes to execute service transactions. All service
transactions are associated with “requet” services and consst of a request message and a
corresponding response message. Some service transactions are associated with “notify” services
and congg of a dngle notification message. All “notify” services require an gpplication leve
acknowledge response.

An dternate transport mechanism for Modbus'TCP is defined in Appendix A. Since both clients and
sarvers may be limited to using “standard” Modbus function codes, the adternate trangport mechanism
defines a dandardized method for utilizing these function codes to achieve object based
communication.

The Modbus protocol promotes a Client/Server communication technique and provides the internd
standard that a Modbus device must use for parsing messages. Each Object Messaging Request shall
be designated with an ‘even’ action code. Each Object Messaging Response shdl be designated with
acorresponding ‘odd’ response code.

Since both clients and servers may be condructed using devices which support only the dternate
trangport function codes, it is necessary that client and server devices support the aternate transport
mechanism in addition to the object messaging function code if so supported.

During communication on a Modbus'TCP network, the protocol determines how each device will

sense its address, recognize a message addressed to it, determine the kind of action to be taken, and
extract any data or other information contained in the message. Each Object Messaging request

requires a corresponding Object Messaging response. The device will condruct the response
message and send it using the Modbus protocol. The Object Messaging protocol can also support a
‘Notify’ service for which a response is required from the target device. The specifics for adherence
to the Modbus protocol are contained in Modicon Modbus Protocol Reference Guide [1].

On the Modbus/TCP network, messages containing the Modbus protocol are embedded in the frame
or packet structure that is used by the network. On this type of network, devices communicate usng a
peer-to-peer technique, in which any device can initiate a transaction with any other device. Thus a

2

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

device may operate either as a server or as a client in separate transactions. At the messaging leve,

the Modbus protocol till applies the client/server principle even though the network communication
method is peer-to-peer.

Modbus applications generdly operate in a client/server fashion where a client polls its servers for
information. Because of the point to point capability of the protocol, Modbus/TCP can support other
methods of communication such as servers reporting asynchronoudy in a cyclica or change of date
fashion using the ‘Notify’ service. Note that determinism may be compromised when utilizing these
asynchronous reporting methods.

The object message that is transmitted seridly in the data field comprises Modbus messages. These
messages are tranamitted in one or more sequentid Fragments that together comprise the message.
The components (also cdled “fidds’) of a Modbus message fragment are shown in Figure 1b. These
components and the Modbus message fragmentation scheme are explained in the following sections.

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

Fragment Byte Count
< >
(X Y] a a O O 0 n a f o000
«dentifier —» |4 Protocol —p |[¢«—Length —p{Unitld | Func |« Data >
< >
/ M essaging Protocol
Object Messaging <= 197 bytesin length
Function Code (91)

(1a)

Messaging Protocol

Fragment Protocol Bits

Byte0 <4—Bytel—»| Byte23 Byte4,5 Byte6,7 Byte89

Length 0 1 2 3 4 5 6 7 Class Id Instanceld Service Data eoe
Reserved Fragment - - >

Fragmert < h Object Messaging Protocol
Byte Sequence
Count Number

Fragment Last

In Process Fragment

Indicator Indicator

(1b)

Figure 1. Object Messaging Protocol Layout
(Each cdl in Figure 1a corresponds to asingle byte unlessindicated as*“...”.
Byte boundariesin Figure 1b are asindicated in the figure.)

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

Network Access and Addressing

Messaging is supported in a client / server fashion in the Modbus/'TCP protocol whereby the
underlying TCP provides Node to Node client /server communication. An addressing scheme is
utilized within this messaging protocol to provide object communication within this dient / server
protocol.

Specificdly, the Modbus' TCP messaging protocol requires that al nodes wishing to utilize messaging
have a configurable IP + Unit ID identifier to uniquely determine the device address on the
Modbus'TCP network. Vaid Unit ID addresses range between 0 and 247 (with 255 usudly
reserved for communication directly with a gateway). Note that a sending device should use “0” asthe
Unit ID when it knows that the target |P address has exactly one device. It is the respongbility of the
person configuring the network to set up device messaging addresses as necessary to guarantee
uniqueness.

On a Modbus'TCP network, when a device wishes to send a message it does so by establishing a
connection with another device or utilizing a device connection previoudy esteblished. The
Modbus/TCP network protocol handles the framing of messages with beginning and end delimiters,
and with the Unit ID handles ddivery of the message to the destination device.

The Modbus/TCP media access protocol utilizes various mechanisms, such as carrier sense multiple
access with collison detection (CSMA-CD), to determine access to the network. This protocol is
thus utilized to resolve conflicts in Stuations where multiple devices wish to begin tranamitting
messages a the same time.

Message Structure

Each Modbus object message, tranamitted seridly in the Data field, consists of one or more sequentia
message fragments. Each message fragment contains seven fields as shown in Figure 1b. Table 1
contains a description of each of thesefidds.

Byte Fidd Name Size Description
Number (bits)
0 Fragment Byte 8 Containsthe byte length (not including itself) of the Messaging
Count protocol portion of the Modbus transaction. The maximum

Fragment Byte Count is 197 bytes (decimal).

1 Fragment In Process 1 Value of TRUE (1) indicates that this Messaging protocol fieldis
Indicator one fragment of a multi-fragment message.

1 Last Fragment 1 Value of TRUE (1) indicates the last fragment in theMessaging
Indicator protocol

1 Reserved 3 Not used at thistime. Should be set to zero (0).

1 Fragment Sequence 3 Counter indicating sequential fragment number beginning with 000,
Number 001, 010, ..., 111. Counter rolls over from 111 to 000.

Table 1: Fieldsin a Message Fragment

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

The Data (i.e., Object Addressing Protocol) portion of larger messages must be broken into smdler
fragments s0 tha high priority messages can gain access to the network in a timely fashion.
Specificaly, a message fragment must be less than or equd to 197 bytes (including itsef and the
Payload Length + Fragmentation Protocol byte). When a device prepares to send a message longer
than the maximum fragment length, it must bresk the Messaging Protocol fidd of the message up into
sequentia fragments of 195 or less bytes each, and congtruct data fragments (of 197 or less bytes,
see Fgure 2) conssting of the fields described in Table 2.

Note, a device sending a fragmented message to a second device can not begin sending another
message (fragmented or unfragmented) to that second device until it has completed sending the first
message. If areceiving device detects that this condition has occurred, it should regect both messages
and attempt (either through a response with an error code — see Appendix B, or astandard exception
code 03) to inform the sending device of the error.

Object Addressing Protocol

The Data Fragment portions of the message fragments, when concatenated at a device, form the
Data field portion of the message. This data is formatted according to the Object Addressing
Protocol, that is, the protocol used for object-to-object communication between nodes.

The objects, their groupings, structure, and behavior in Modbus devices conform to an Object
Model. Inthismodel, objects are generally regarded as entities that group structure and behavior in a
logicd manner. Objects usudly have a physical or conceptual andog in a device gpplication. For
example, an object may be associated with a sensor in a device, or may be the collection of structure
and behavior that comprises the management of the device. The Modbus Object Addressing Protocol

utilizes a Class / Ingance hierarchy to support inheritance to alow for the definition of “types’ of

objects (Classes) as well as specific implementations of these objects (nstances). For example an
object class in a photodetector array device might be “photodetector” where object instances refer
individualy to each photodetector.

An object (class or ingtance) has zero or more attributes, which are parameters that contain
information associated with the device. For example “sensor vaue’ may be a parameter associated
with a sensor object instance.

An object (class or instance) supports zero or more services which are functions or capailities that
the object can provide. Most services are request services in which a “requet” for a service is
issued to an object, and the object generates a specific “response”’ to the requestor as part of the
process of carrying out the service request. Parameters may be included with the request and / or
response as necessary to carry out the service. As an example, a service supported by a sensor
object may be “Get” where an associated request parameter is “ attribute number” and an associated
response parameter is “attribute value’. Note that the first service parameter of dl response service
messages is an error code (see Table 2). An object may aso support notification services.
“Notifications’ associated with these services are generated asynchronoudy by the object.
Parameters may be included with the service natification as necessary to carry out the service. Asan
example, an Alarm Publish service may be associated with a sensor object and would reports an
darm date attribute whenever that attribute changes from zero to a non-zero vaue.

An object aso has associated behavior, which identifies as appropriate how the object implements
sarvices, interacts with other objects, interacts with any outsde environment, etc. For example,
behavior associated with a sensor object might be: on receipt of “Get” service request, where attribute
number parameter corresponds to “value’ atribute, detect environment value, store in “vaue’
attribute, and send “ Get” service response with response parameter vaue equd to “vaue’ dtribute.

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

The Object Messaging Protocol utilized in the Data field of Modbus message provides for the
communication of services (requests, responses and notifications), between objects a various
message capable nodes on the Modbus/TCP network, thereby supporting the Modbus object modd .
In order to provide this support, the Data field of a message is sub-divided into a number of sub-fidds
asshown in Figure 2. These sub-fidlds are described in Table 2. Refer to Appendix C for an example
of the message format.

Byte < Class ID (16 bits) >
Order
MSB Upper Byte LSB ' MSB Lower Byte LSB
1-2
0 1 2 3 4 5 6 7 8 9 10 11 | 12| 13 | 14 | 15
< Instance ID (16 bits) >
MSB Upper Byte LSB | MSB Lower Byte LSB
3-4 ol 1l213lals|6l7! 8|9 l10l1|l12)13/14]15
< Service Code (16 bits) >
MSB Upper Byte LSB ' MSB Lower Byte LSB
5-6 ol 1/ 2|3 4 !5|6!/7|8|9l10fl11|12|13]14]15
l‘ Service Parameter Data >
7-8 0 1 2 3 4 5 6 7 8 9 10} 11 1 12 | 13 | 14 | 15

<195 0 1 2 3 4 5 6 7 8 9 /10 11 | 12 13 | 14 | 15

Figure 2: The Data Field in a Modbus Message
(Bit number represents transmission position)

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

Sub-Fidd Name

Size (bits)

Description

Fragment Byte
Count

8

Contains the length in bytes, (not including itself) of the Messaging protocol
portion of the Modbus transaction. Note that it does not include any byte
that may be “stuffed” at the end of afragment to ensure word boundaries of
transmissions (see description of “Data and Stuff Byte” Sub-Fields below).
Maximum Fragment Byte Count length is 197 bytes.

Fragment
Protocol

Refer to Table 1 and Figure laas:
Bit 0: Fragment In Process Indicator
Bit 1: Last Fragment Indicator

Bit 2-4: Reserved

Bit 5-7: Fragment Sequence Number

Class|D

The object class associated wi th the service. In aservice request thisisthe
target class ID of the object to which the request is directed. Inaservice
response or notification it isthe class ID of the object that is sending the
response.

Instance ID

The object instance associated with the service. In aservicerequest thisis
the target instance ID of the object to which the request is directed. Ina
service response or notification it is theinstance 1D of the object that is
sending the response. Notethat if aserviceisdirected at the Class object,
the Instance ID is zero.

Service Code

A number indicating the service request / response / notification being
issued. Servicerequests and notifications have odd numbered Service Code
values. Each service response has a value equal to the corresponding
Service Code (Request) + 1. A Service Code of zeroisinvalid.

Data

N* 16

Data associated with the service request / response / notification, i.e., service
parameters. Note that the first parameter of ALL response service messages
isaone-word error code. Common response service error codes are defined
in Appendix B.

Stuff Byte

8
(Condition
d)

If the length of the Datafield is not amultiple of 16 bits, thisfield isincluded
at the end of the fragment to ensure that the transmission is amultiple of 16
bits. Note that thisfield does not contain meaningful dataand is not
included in the Fragment Byte Count

Table 2: Sub-Fields of the Message Data Field

A Modbus message communicates a service request, response or notification to or from a specific
object instance of an object class at a node using the Object Addressing Protocal. In thisway the
structure / behavior of an object can be communicated / invoked over aModbus/TCP network using
Modbus messages.

Compatibility of Messaging with Non-Message Capable Nodes and Nodes
Retrofitted with Messaging Capabilities

A large number of Modbus devices do not support the object messaging capability for reasons of
older devices, smplicity, memory conservation, data regurements, etc. These object message

8

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

incapable devices can co-exist with message capable devices in a Modbus/'TCP network. The object

message incapable devices shdl respond to the device “query” with an error “responsg’ (function
code 01) which would indicate “1llegd Function” error.

A number of Modbus devices are cgpable of encoding/decoding object messaging, but can only utilize
“currently existing” Modbus function codes. For these devices an dternate set of existing function
codes have been identified. Device setup and use of these function codes as an aternate method of
supporting object messaging is detailed in Appendix A. Note that the default Object Messaging
Function code, #91 should be used wherever possible.

Since both clients and servers may be congtructed using devices which support only the dternate
trangport function codes, it is necessary that client and server devices support the dternate transport
mechanism in addition to the object messaging function code if so supported.

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

Appendix A: Alternate Transport Mechanism for Modbus/TCP -- Utilizing
“Existing” Register Read/Write Function Codesto Support the
M odbus/TCP Object M essaging Protocol

Background

There are many sStuations in which facilities requiring ‘new’ MODBUS functions need to be retrofitted
to devices which implement only the 'sandard’ functions. In many cases, it is impractica to replace
the PLC firmware or Operating System libraries which provide MODBUS sarvice, so an gpproach
which alows the MODBUS functions to be ‘encapsulated’ or ‘tunndled’ is required instead.

This gppendix describes such a mechaniam, with the particular rdation to the SEMI object mode
protocol extensions described e sawhere.

Specific issues

All MODBUS devices have fadilities for exchanging blocks of memory of undefined meaning. The
primary functions used are

FC 3 —‘read registers

Allows the ‘read’ of up to 125 16-bit words from atarget device, given a start address (‘reference’)
and length (‘number of registers)

FC 16 —‘write registers

Allows the ‘write' of up to 100 16-bit words to a target device, given a start address and length as
above.

Any such individud transfer may be regarded as ‘aomic’, meaning that the datais treeted asiif it were
‘sngpshot’ a a Sngle ingant in time. A movement d data comprising more than one transfer may
NOT be regarded as atomic, since it may span more than one ‘scan’ of the target device, and if the
data were being congtantly updated then the information transferred from different scans would be
incong stent.

Modbus does not maintain any true nature of a‘connection’ between a client and a server, except for
the duration of a single ‘transaction’ comprisng a MODBUS request and its associated response.
Therefore there is the posshility that a sequence of transactions initiated by one client to a server may
be interleaved with transactions from another client. Thisis of particular importance when dealing with
data areas such as ‘mailboxes which are designed to be updated by multiple clients. There is no
guarantee that multiple attempts to update such a mailbox will not occur smultaneoudy.

Modern PLC's have a mechanism for accepting ‘user-specified function blocks which accept as
parameters a block of registers of unknown content but discernable address and bngth. Such
functions may be written in conventional computer language, such as C or C++, and provide a
suitable way to handle dgorithms or other data processing tasks for which the traditionad PLC ladder
or function block languages are inappropriate. However they are deliberatdly NOT dlowed to
perform non-computational tasks, such as control of /O devices or generation of networking

Messages.

10

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

By combining such user function blocks with the exising MODBUS register moving primitives, it is
possible to implement arbitrarily complex functions. Thisis exactly what is intended by this document.

Register Assignment
Seetext below for detail interpretation

Word 0: signatureword 0 =“SE” = 0x5345

Word 1: sgnatureword 1 = “MI” = 0x4D49

Word 2: sgnature checksum = Ox5F72

Word 3: number of channels supported = N (1 to 40)
Word 4: channel assgnment mailbox (writable by dl clients)

Word 5: channd assgnment ID for channd 1

Word 4+N: channel assgnment ID for channd N
Word 5+N: sequence/ID word of request buffer for channd 1

Word 6+N: bytes 0 and 1 of request for channd 1

Word 104+N: bytes 197 and 198 of request for channel 1
Word 105+N: sequence/ID word of response buffer for channel 1
Word 106+N: bytes 0 and 1 of response for channd 1

Word 204+N: bytes 197 and 198 of response for channel 1
Word 205+N to 404+N: asfor 5+N to 204+N for channel 2

Word 5+200(N -1) to 204+200(N-1): request and response buffersfor channe N
Note that the sequence/ID occupies a whole word. This is because the gpplication message, starting
with the byte count, is dready a multiple of 16 bitsin length so thereisno vaue in usng a shorter field.

Protocol Encapsulation Details
There are redly three parts to this definition

1. Mailbox discovery

11

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

2. Channd assgnment and release

3. Protocol message encapsulation

Mailbox Discovery

Since the mechanism is layered on top of the standard MODBUS FC 3 and FC 16 operations, it is
not possible to confirm that a target device supports the protocal by interrogating it speculatively, asis
true for al individud MODBUS functions. Instead, communicetion is arranged to use a series of data
buffers, allocated from blocks of registers. In order to confirm that the registers have the purpose
intended, a ‘sgnature pattern’ is deposited at a recognizable location. By arranging that the chance of
accidentad match of this signature pattern is very low, the chance of mis-identifying a conventiond

PLC is made smilarly low. In this encapsulation, we use a series of 3 16-bit words as the signature
pattern which must match, so that the chance of mis-identification of a random PLC is about 1 in

2748, or onein 10M14

The reason for relying upon a signaure rather than a predefined register address is to dlow flexibility
in retrofitting devices whose register dlocation have aready been made. The pendty for this technique
is an increased communication burden at initid connection. However even if a register table of sze
10000 words had to be scanned to find the signature, this takes only 80 read operations (125 words
each), and occupies less than 20 msec of transmission time on an Ethernet network. It can therefore
be readily completed in a few seconds after restart of a client machine without undue burden on the
network.

The signature block chosen for the SEMI protocol consists of the following 3 words:
Word 0: ASCII “SE” = 0x5345
Word 1: ASCII “MI” = 0x4D49

Word 2: Zero-sum checksum (such that words 0-2 when added would result in zero) = Ox5F72

Channel Assignment and Release

Any mechanism for supervisory control must dlow for the possibility of subgtitution of the supervising
device, ether as a deliberate act or as consequence of falure. In a conventional network, this is
usudly achieved by dlowing for multiple ‘channels at any ingtant, and alowing for a new ‘magter’ to
take control by issuing commands using its own channd. In the case of aMODBUS encgpsulation, a
dightly different mechaniam is necessary, as a consequence of the inability of a server (Modbus dave)
to confirm the identity of the client (MODBUS magter) which is requesting any operation. Any such
identification, athough not provided directly by the MODBUS protocol, can be added a the
encapsulation levdl.

The mechanism defined here uses an arbitrary number of ‘channels', each channd in turn reserving:
A sngleregiter ‘assgnment’ indicator

A 100-register request buffer

A 100-register response buffer

In addition, there is a Sngle multiple-access register known as the ‘mailbox’, and which is used by al
clients to request assgnment of a channd.

12

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

It isarranged that the assignment registers for al channels are contiguous, so that a client may confirm
the assgnment status of dl channdsin asngle READ operation. A channel is requested by writing a
non-zero identification paitern into the ‘mailbox’ . Details of the meaning of these identification patterns
is meaningless to the mechanism, but a common approach is to alocate a unique, nontzero, 16-bit
number to each device which may perform client service. That way, ID conflicts will be avoided.

To request a channd, first see if you dready have one alocated. This can be done by READing the
channel assgnment block, to seeif your chosen ID is il registered. If it is, you may continue to useit.
If it has been cleared to zero, then the server has performed a unilateral close, probably due to an
inactivity timeout, and the client mugt ‘re-bid’ for achannel using the mailbox.

The server will react to a non-zero vaue in the mailbox by assgning a channd if one is avallable,
indicating this by copying the ID vaue from the mailbox into the gppropriate ‘assgnment’ register, and
clearing the mailbox to zero in preparation for the next assgnment request. Note thet it is perfectly
possible for multiple clients assignment requests to collide, so the client should read dl registers from
the mailbox to the end of the assgnment block to confirm the status of his request. If hisID has been
removed from the mailbox, but has not gppeared in one of the assgnment registers, he should assume
the request has been lost and be prepared to re-submit.

A wel-behaved dient will rdlease its channd voluntarily after use, this is done by writing a zero
directly to the ASSIGNMENT regigter. The server will guarantee not to re-dlocate an ‘involuntarily
released’ channel for a period of at least one second, therefore a client may safely rely upon the
indication that it owns the channd obtained during a preceding read, so long as the hegtation is
sgnificantly less than one second. After a voluntary close, there is no need for atime delay before re-
assgnment.

(This operation does not cause any collison problems because MODBUS dlows the length of awrite
operation to have an extent of a sngle word, thus the clearing of the assgnment word for cliert 1 by
client 1 will not change the vaues recorded in the table for any other channels)

The sarver will perform a unilaterd close on any channd which does not have a new request placed
upon it for a period of one second. Supervising devices which guarartee a scan time less than one
second may therefore leave the channel open and reasonably expect it to be preserved. Devices
requiring intermittent service where hestation may exceed one second should perform the voluntary
close operation to avoid unexpected hesitation.

The server will maintain a‘ guard band’

Protocol Encapsulation

Once a channel has been alocated, the client is free to place requedts in the ‘request buffer’ and to
look for responses in the ‘response buffer’. However the first word of both the request and response
buffers has pecific meaning. It is a sequence number field which will vary from one request to the
next, and which alows the server to determine that the contents of the request buffer does indeed
represent a NEW request, and is not smply the previous one undtered.

The next word is the gart of the Object Messaging Protocol data unit, starting with the fragment
length byte and fragmentation flags byte.

13

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

(note thet if a message is carried using fragmentation, the meaning of this field is taken on a fragment
by fragment basis. It thus aways indicates the number of sgnificant bytes immediately following the
byte count itsdlf)

When the request has been recognized by the server, it will generate a response with the same
structure. The sequence field of the response will be copied from the request. The length fidd of the
response will indicate the length of the response (or response fragment)

The payload of the request and response buffers will be identica to the protocol definitionfor the
OMP protocol request and response given earlier, except that the bytes up to and including the
function code are discarded.

The result of this rdaionship is that the handling of messages ether by direct transmisson or by
dternate tranamission is largdy identical. This means that testing of the dternate protocol is limited to
trangport encoding only, theat any application functiondity will be handled by common processng and
therefore will generate identica results usng ether mechaniam.

Protocol Encoding Example

(Numbers below should be assumed hexadecima unless otherwise stated or followed directly by a
period)

The examples below show MODBUSTCP exchanges using the same typographic conventions as is
used in the OPEN MODBUS/TCP SPECIFICATION. That is, an exchange written as

0300000001 => 03021234

represents a MODBUS request of 03 00 00 00 01 (function code 03, reference 0000, count
0001)

generating a MODBUS response of 03 02 12 34 (function code 03, byte count 02, data vaue
1234)

When seen as a TCP data exchange, and assuming a unit identifier of 09, each of the above messages
would be prepended with the 7 byte sequence consisting of transaction_id (2) protocol (2) length (2)
and unit_id (1) resulting in:
Request: 00 00 0000 00 06 09 03 00 00 00 01
Response: 00 000000000509 0302 12 34
The Object Messaging Protocol example used here is a typicd enquiry to find the device type. This
would be a suitable enquiry to find whether the device in question was an OMP-capable device, and
if so what you could expect it to do.
The structure of the query and response over M odbus using the native encoding would be

5B 09 00 00 01 00 01 00 07 00 01 => 5B 09 00 00 01 00 01 00 08 12 34
Thisis broken down as follows

Reguest
14

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

5B Modbus function code (91. Decimdl)
Number of bytes of message (fragment) following
no fragmentation

0001 class=0001

0001 ingstance = 0001

0007 sarvice request = get atribute

0001 sarvice data= attribute number = 0001 device type
Response

5B Modbus function code

Number of bytes of message (fragment) following
no fragmentation

0001 class=0001

0001 ingstance = 0001

0008 sarvice request = get attribute response
1234 sarvice data = attribute value = 1234

Now if the server did not support the native encoding, it would respond to the Modbus query with an
‘undefined function’ exception (Modbus exception = 01) This would come through as

5B 09000001 00010007 0001=>DB 01

In order to use the dternate encoding, the client must first identify the ‘signature ared found
‘somewhere’ in the register space of the target. So the client issues a series of Modbus requests to
read the register space, and ingpects the results looking for the signature pattern which will be the
sequence (in hex)

4D49 5F72

For example, aread of the first 125. (decimal) registers would be the following exchange

03 0000 00 7D => 03 FA (plus 250. bytes of data...)

and the next 125 registers would be

0300 7D 00 7D => 03 FA (plus 250. bytes of data...)

At some point, the 5345 4D49 5F72 sequence will be seen, or an exception response will be
generated because the register number is too large. This would normaly be exception 2 (bad

reference), looking like this (assume we are up to reference 7D00 by this time, a big number)

037D 0000 7D => 83 02
15

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

Assume for the continuation that the signature block was found at reference 4000 (hex)

This means that if the client were now to issue a request to read 3 words at 4000, he would get the
following

0340 00 00 03 => 03 06 53 45 4D 49 5F 72

It dso means that the number of channds would be found at 4003, the sesson mailbox a 4004, and
the current assgnments at 4005 on

Issue arequest to read 42. (decimal) words at reference 4003. This will be enough to read the whole
reservation table, since the maximum number of sessonsis 40. The resultswill be

Word 0: number of sessons
Word 1. mailbox (ignore for now)
Word 2: reservation for channd 1

Word 3: resarvation for channd 2

Assume the sequence was

03 40 03 00 2A => 03 54 00 08 00 00 00 00 (plus 39. other words)

The response says

function code

byte count (42. decima words = 84. Bytes)

0008 number of channels supported = 0008

0000 current mailbox state = empty

0000 channd 1 gate = unreserved

It is a remote posshility on initid connection, bu must ill be considered, that there is dreedy a
session established between this client and this server. If that were true, then the ‘client ID’ number
dlocated to this client would be found dready in the session alocation table. If not, then the client
mug ‘bid’ for a channd by putting the very same client ID pattern in the ‘mailbox’, and then repesating
the check to see if the server is willing to dlocate a channel. (It should be, because it gppears there
are currently unalocated channels))

Assuming the client ID is OXABCD, the transaction would be

104004 0001 02 AB CD =>104004 00 01

which is ‘write registers, reference 4004, 1 word, 2 bytes, value OXABCD’

Now the client repesats the channel address table read request, looking for the following results

The mailbox 4till contains ABCD
16

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

The server has not yet processed the request, try reading again
The mailbox does not contain ABCD, but ABCD appears in one of the channel reservation words

The server has alocated the given channd for this sesson. Based on WHICH channdl was alocated,
the address of the request and receive buffers can be determined

The mailbox does not contain ABCD, and ABCD appears nowhere in the channel reservation list

Probably there was a ‘collison’ and 2 clients bid smultaneoudy, with the result thet te earlier vduein
the mailbox was overwritten before being consdered by the server. Retry the bid process from the

beginning by writing the mailbox agan.
Assume that the pattern ABCD was found in the first channd assgnment word, for example
034003 00 2A =>03 54 00 08 00 00 AB CD (plus 39. other words)

This indicates that channel 1 has been assgned to this sesson. That means in turn that the request
buffer for this channd isfound at a reference number to be calculated asfollows

4005 + (start of channd assgnment table)

0008 + (length of channd assignment table = number of channds

(0x (channd number minus one)

00C8) (length of request buffer + length of response buffer = 200. Decimd)

and the response buffer is found 0064 hex words further on. In this particular case, the request buffer
starts at 400D and the response buffer at 4071

Findly (!) the client gets to place the origind request, which as we recal would in native encoding
have been

5B 09 00 00 01 00 01 00 07 00 01 => 5B 09 00 00 01 00 01 00 08 12 34

When presented for aternate encoding the initia 5B is omitted, the rest from the byte count onwards
is placed in the request buffer after the sequence word. Assuming the client’s next sequence vaue was
2222, this would be achieved by the following sequence

1040 0D 00 06 OC 22 22 09 00 00 01 00 01 00 07 00 01 => 10 40 OD 00 06

Now the client must check, possibly repeatedly, to see if the request has been processed by the
server and a response provided. When that happens, the Modbus response will have been placed in
the response buffer usng the same encoding convention. The smplest way to check for thisisto do a
full 100 (decima) word read of the whole response buffer, and inspect the first word to see if it
contains the new sequence number (2222). Note that there is no requirement that sequence numbers
be in fact contiguous, only that they be distinguishable from previous sequence numbers, so that the
responses can be distinguished from a previous response il in the buffer. The vaue zero must not be
used, since that indicates ‘no message and will be the vaue Ieft in the ID fidd of the REQUEST
buffer by the server, to dlow the server to record that the request apparently in the buffer has dready
been processed.

17

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

The transaction to extract the response will ook like this, if the response has been prepared
0340710064 => 03 C8 2222 09 00 00 01 00 01 00 08 12 34 (plus 94. other words)

The client extracts the response, just asif it kad been handled using native encoding, where it would
have been

5B 0900000100010008 12 34

It isdecoded as

byte count

not fragmented

0001 class

0001 ingance

0008 et attribute response

1234 response data

If any pattern other than the ID isfound in the first word, then the request has not yet been processed
The above sequence can be repested, just change the sequence number to a different value so that the
responses can be readily digtinguished. Note that the server redly does not care what number is used,
snceit just checks againgt the zero vaue in the request to see if anew request has been presented.
When the channdl is to be released, which for well-behaved clients would be if the client does not
Qt}@d to re-use the channd with in the next 1 second, it does so by clearing the channel reservation

Recall from the example above that the dlocation word for this channd was at 4005 hex (This was
the word containing the client’ sidentifier pattern of ABCD)

To clear it, issue awrite register request of 1 word

1040 05 00 01 02 00 00 => 1040 05 00 01

18

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

Appendix B: Service Response “Error Code’ Parameter Values

The first parameter of ALL service code response messages is the “Error Code’ parameter. This
parameter is one word in length and can have a vaue ranging from O to 65535. The following table
identifies the error response type associated with value ranges of this parameter.

Error Code Value Range Meaning
0 Success
1-127 Error — Genera
128 — 255 Error — Device Type Specific
256 — 65,535 Error — Manufacturer Specific

Thefollowing table is the enumeration of Generd Errors:

Error Code Value Meaning

Invaid sarvice code

Invalid service code parameter

Invdid attribute

Attribute out of range

Not vdid in this state

Fragmentation error

N[o|loa|l b~ W|IN]| R

Fragments from multiple messages

255 Unspecified error

Device Type Specific Error Code meanings would be defined through agreement of manufacturers of
a specific device type within the Modbus organization. Manufacturer Soecific Error Code meanings
are defined and documented by the manufacturer.

19

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

Appendix C: Example of a Data Field in a Modbus M essage

The following is a formatted example of the Message Data Fidld in a Modbus message represented in
Figure 1b and Figure 2. It details aformat of a service request with a service code of 00 05 directed
at an object instance with a Class ID of 00 04 and an Instance ID of 00 01 (numbers are represented
in hexadecimd):

The encoding of the sub-fields (see Table 2) is as follows:
Fragment Byte Count (1 byte) = 08

Fragment Protocol (1 byte): 40, (01000000 binary) where:
Fragment In process Indicator = 0 (False)
Last Fragment Indicator = 1 (True)
Reserved = 000
Fragment Sequence Number = 000

ClassID (2 bytes) = 00 04
Instance ID (2 bytes) = 0001
Service Code (2 bytes) = 00 05
Service Parameter (1 byte) = 08

The example bdow shows the Message Data Field of the message fragment as it would be
transformed (most Sgnificant bit of each byte tranamitted first), and viewed over the transmission line.
For example, the Fragment Byte Count of 08 (00001000 binary) would be transmitted as 10
(00010000 binary).

Fragment Byte Count = 10
Fragment Protocol Bits = 02
ClassID = 0020
Instance ID = 0080
Service Code = 00AO
Service Parameter = 10

The transmission would gppear as.

10 02 00 20 00 80 00 A0 10 00

20

Networ k Messaging Specification for the MODBUSTCP Protocol: Version 1.0

Notes:

1) Since the data length is 1 byte it is not a multiple of 16 bits. Thus a byte with avaue of 00 is
“guffed” a the end of the message (this is the conditional Stuff Byte field). Note that the
Fragment Byte Count does not include this byte.

2.) The Fragment Protocal byte is transmitted MSB first (as with dl other bytes). Thus for
example, afragment protocol with:

Fragment In process Indicator = O (False)
Last Fragment Indicator = 1 (True)
Reserved = 000

Fragment Sequence Number = 001

Would be represented as 41 (binary 01000001), and transmitted as 82 (binary 10000010),

21

